Air Quality Assessments and Monitoring Programs for the Central Artery / Tunnel Project Boston, Massachusetts

John Formosa

Federal Highway Administration – Boston, MA

Alex Kasprak

Massachusetts Turnpike Authority – CA/T Project

Central Artery / Tunnel Highlights

- ♦ 2 Two-lane tunnels under Boston Harbor (I-90)
- ◆ 2 Five-lane tunnels through downtown Boston (I-93)
- ◆ Ten lane cable-stayed bridge over Charles River
- 6 Ventilation Buildings
- ♦ 8 Longitundinally ventilated exit ramps

Construction Highlights

Within 7.5 mile corridor

- ◆ 160 Lane-miles of new highways
- ♦ 80 Lane-miles of new tunnels
- ◆ 150 Acres of new parks
- ♦ 13 millon cu-yards of excavated material
- 4 millon cu-yards of concrete poured
- Over 200 pieces of construction equipment in simultaneous operation

Construction Period 1992-2005

- ♦ 1992 Utility Relocation
- 1992 Ted Williams Tunnel (TWT) started
- ♦ 1995 TWT opened to comercial traffic
- ♦ 1997 Downtown tunnels started
- 1998 Charles River Bridge started

Opening Schedule

◆ September 2002 TWT / I-90

November 2002 I-93 Northbound

November 2003 I-93 Southbound

(north section)

November 2004 I-93 Southbound (south section)

History of Environmental Assessments

- ♦ 1985 EIS/R
- ◆ 1990 Supplemental EIS/R (14 Volumes)
- ◆ 1991 ROD FHWA/MHD
- ♦ 1994 Charles River Crossing SEIS/R
- 1995 FHWA Longitudinal Ventilation
- ♦ 1995-2000 Over 10 NPCs/ERs

Critical Environmental Aspects

- Disposal of excavated material
- Marine and aquatic impacts
- Pest control program
- Water quality on discharged waters
- Noise and vibration control
- ◆ Air Pollution control

Air Quality Analysis

- ◆ Regional (area-wide) emissions assessment
 - Carbon Monoxide (CO), Nitrogen Oxides (NOx), Non-methane Hydrocarbons (NMHC), Particulatte Matter (PM₁₀)
- ♦ Localized (microscale) impacts at intersections
 - *CO*
- Impacts of ventilation system emissions
 - $\overline{}$ \overline{CO} , \overline{NO}_2 , \overline{PM}_{10}
- ♦ Impacts of construction activities
 - CO, PM₁₀

National & State Ambient Air Quality Standards (NAAQS)

♦ CO

- One-hour = 35 ppm
- *Eight-hour* = 9 *ppm*

♦ NO₂

- Annual 100 ug/m³
- One-hour 320 ug/m³ (DEP Policy Guideline)

→ PM₁₀

- Annual 50 ug/m^3
- -24-hour 150 ug/m³

Air Quality Analysis 1990 SEIS/R Construction Period

- Localized CO modeling at intersections
 - Year 1994
 - 19 intersections
 - Highest 8-hour level = 11.1 ppm
 - 3 Intersections above NAAQS
- ◆ PM₁₀ modeling at construction areas
 - Excavation, earth moving, truck traffic,
 - 3.7 acre, 5,300 tons/day, 250 trucks/day
 - Highest 24-hour $PM_{10} = 160 \text{ ug/m}^3$

Construction Air Quality Committee (CAQC)

- ◆ Formed 1991 as part of FHWA ROD
- Represented by:
 - FHWA, MTA, EPA, DEP, City of Boston
- Evaluates air quality impact studies
- Determines monitoring activities
- Recommends mitigation and control programs

CO Monitoring Program

Started 1992 ongoing

- Sites include most congested intersections
- Areas most affected by construction detours
- \diamond 4 8 sites 3 weeks every winter
- ♦ Location: light poles 10 feet height
- ♦ Two 8-hour periods per day
- Portable MiniVOL CO air samplers
- Air samples measured with NDIR analyzer

CO Monitoring Program Results 1992-2002

- ♦ 32 locations during 11 years
- 3,600 eight-hour samples collected
- ♦ Peak hour traffic 2,000 to 6,000 vehicles
- ◆ PM period higher than AM 90% of time
- ♦ Three highest locations 1993-1995
 - -5.6 to 7.1 ppm
- ◆ Same locations 2000-2002
 - -2.5 to 3.5 ppm

Dust Control Program

- Contract specific requirements
- Truck wheel wash stations
- ♦ Extensive use of watering trucks
- Dust suppresion agents (Soil-Sement)
- Dust screens and barriers
- Vacuum sweepers on paved roads
- Hydro seeding of stockpiles
- Crushed stones at ingress/egress roads

Dust Control Inspection Program

- ♦ Inspect three times/week all sites
- Observable dust and diesel emissions
- Dirt tracking onto public roads
- Compliance with Dust Control Specification
- ◆ Enforcement (Deficiency Reports)

PM₁₀ Monitoring Program 1992 - Ongoing

- One permanent station
- ♦ 8-10 portable MiniVOL samplers
- ◆ 3 weeks/year (1992-1996)
- ♦ 4 months/year (1997 -2001)
 - Twice a week June to October
- Over 400 24-hours samples/year

PM₁₀ Monitoring Program Site Selection Criteria

- Level of construction activity
- Sensitive abutters
- Downwind from construction areas
- High levels measured in previous years
- Community concerns

PM₁₀ Monitoring Equipment

- AIRMetrics MiniVOL Samplers
- ◆ CAHN C-33 Microbalance
- ◆ TEOM 1400 monitor
- ♦ RS-232 Data Logger

PM₁₀ Results

- Permanent rooftop monitoring station
 - $-25-70 \text{ ug/m}^3$
- Sidewalk monitors
 - $-30-330 \text{ ug/m}^3$
- Mean construction impacts
 - < 100 feet from construction area 10 80 ug/m³
 - -100-250 feet from construction 10-40 ug/m³

Construction Effects on PM₁₀ Levels

- ♦ Effects of construction activities localized
 - (less 250 feet)
- ◆ Largest source of PM₁₀ re-suspended dust from exiting trucks
- ♦ Additional mitigation and enforcement reduces peak increments by 50 %
- ♦ Background PM₁₀ monitored levels constant during last 10 years (~ 30 ug/m³ annual average)
- ♦ Highest PM₁₀ levels cut by half from 1997 to 2001
 - $(330 \text{ ug/m}^3 \text{ to } 168 \text{ ug/m}^3)$

Diesel Emission Control Program

- Assigned staging zones for waiting trucks
- Limit diesel idling to less than 5 minutes while not operating
- Retrofit construction equipment with oxidation catalysts

Diesel Retrofit Program for Construction Equipment

- ♦ Reduce diesel impacts on abutters and construction workers.
- ♦ Help CA/T Project meet its environmental commitments.
- ◆ Reduce regional emissions.
- ◆ Good public relations.

Diesel Retrofit Program

- ◆ Originated in fall 1998 in collaboration with the Massachusetts DEP and NESCAUM.
- Only off-road equipment retrofitted.
- ◆ Focus on equipment near:
 - Residential communities.
 - Hospitals.
 - Building fresh air intakes.
 - Underground areas (worker health & safety)

Oxidation Catalysts Instead of Diesel Particulate Filters

- ◆ Reduce CO, HC, PM
- ◆ Ease of installation and maintenance
- ◆ Lower unit cost (\$ 2,000 versus \$ 13,000)
- ◆ Proven technology (over 1 million in use)

Retrofit Program Phase 1

- ♦ 8 pieces of equipment retrofitted
- 3 contractors participated
- Oxidation catalysts provided by MECA
- Contractors contributed installation costs
- Equipment manufacturers provided written assurance on engine warranty

Retrofit Program Phase 2

- Retrofitted 60 additional pieces of equipment
- ◆ CA/T paid ½ the cost of each oxidation catalyst
- Contractors paid remaining cost and installation costs

Equipment Retrofitted

- ♦ 50 300 HP range engines
 - cranes
 - lifts
 - excavators
 - bulldozers
 - generators
 - compressors

Retrofit Program Costs & Operational Issues

- ◆ Oxidation Catalysts cost \$1,000 to \$3,000 per unit (\$2,500 average)
- ♦ Installation time < 2 hours.
- ♦ No adverse effects on equipment performance.
- ♦ 60 installed during Phase 2
- ♦ Warranty concerns (resolved in Phase 1)

Future CA/T Retrofits

- Retrofitting incorporated into Odor Control Specification 721.562
- ◆ 75 to 100 additional pieces of off-road pieces to be retrofitted between 2001 - 2004

AN AIR POLLUTION CONTROL DEVICE

Emission Reduction Potential

Estimated % reduction according to EPA certification list

- \bullet CO = 40%
- ♦ HC = 50%
- PM = 20%

Emission Reductions of Retrofit Program

- ♦ For the year 2000:
 - − 90 Kg/day (36 tons/yr) of CO
 - 30 Kg/day (12 tons/yr) of HC
 - 8 Kg/day (3 tons/yr) of PM₁₀
- ♦ Based on 88 pieces of equipment retrofitted
- ◆ Reductions double between 2001 -2004
- ♦ Slowly decrease to 2000 levels after 2004

Discussion of Results Construction Effects

Diesel Emission Control Program

- ♦ Very cost/effective way to reduce emissions
- ◆ Cost of oxidation catalysts 1-2 % of construction equipment
- ♦ Benefits 20-50 % emission reductions
- Elimination of diesel odors

Air Quality Trend 10 Years of Monitoring Data

- ◆ CO Downward ~ 50 %
- ♦ NO₂ Stable and down ~ 20 %
- PM_{10} Stable and down ~ 15 %
- ♦ O₃ Less NAAQS exceedances per year

Clean Fuel

- Use PuriNOx in diesel powered construction equipment
- PuriNOx emulsified diesel fuel
 - No. 2 Diesel + Additive + Water
- ◆ Reduces NOx and black smoke
- Slight engine tuning required

PuriNOx Test

- ♦ Caterpillar 311B excavator
 - − Model year 2000 − 79 HP Engine
- ◆ Three weeks 16 hours/day
- ♦ 600 gallons of PuriNOx
- ◆ Tests compared No. 2 Diesel with winter blend of PuriNOx

PuriNOx Test Results

- ♦ NOx reductions 24% 30%
- ♦ Black Smoke reductions 93% 97%
- No performance problems
- Required slightly more power in deep mud conditions
- Fuel consumption slightly increased

COSTS Oxidation Catalysts Vs Clean Fuel

- ◆ Oxidation Catalysts @ \$ 8/HP
- ◆ PuriNOx @ \$ 0.15/Gallon above No.2 Diesel

CA/T Environmental Oversight Committee

- Meets by-weekly to address community concerns/problems
- Consists of Project and City staff
- Provides window and dust treatment mitigation measures

